4.6 Article

On hydrodynamic shear turbulence in Keplerian disks: Via transient growth to bypass transition

期刊

ASTRONOMY & ASTROPHYSICS
卷 402, 期 2, 页码 401-407

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20030269

关键词

accretion, accretion disks; hydrodynamics; instabilities; turbulence

向作者/读者索取更多资源

This paper deals with the problem of hydrodynamic shear turbulence in non-magnetized Keplerian disks. Several papers have appeared recently on the subject, on possible linear instabilities which may be due to the presence of a stable stratification, or caused by deviations from cylindrical rotation. Here we wish to draw attention to another route to hydrodynamic turbulence, which seems to be little known by the astrophysical community, but which has been intensively discussed among fluid dynamicists during the past decade. In this so-called bypass concept for the onset of turbulence, perturbations undergo transient growth and if they have initially a finite amplitude they may reach an amplitude that is sufficiently large to allow positive feedback through nonlinear interactions. This transient growth is linear in nature, and thus it differs in principle from the well-known nonlinear instability. We describe the type of perturbations that according to this process are the most likely to lead to turbulence, namely non-axisymmetric vortex mode perturbations in the two dimensional limit. We show that the apparently inhibiting action of the Coriolis force on the dynamics of such vortical perturbations is substantially diminished due to the pressure perturbations, contrary to current opinion. We stress the similarity of the turbulent processes in Keplerian disks and in Cartesian flows and conclude that the prevalent skepticism of the astrophysical community about the occurrence of hydrodynamic shear turbulence in such disks is not founded.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据