4.5 Article

A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve

期刊

JOURNAL OF BIOMECHANICS
卷 36, 期 5, 页码 699-712

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0021-9290(02)00448-7

关键词

aortic valve; fluid-structure interaction; fiber-reinforcement; finite element method; fictitious domain method; arbitrary Lagrange-Euler method

向作者/读者索取更多资源

The importance of the aortic root compliance in the aortic valve performance has most frequently been ignored in computational valve modeling, although it has a significant contribution to the functionality of the valve. Aortic root aneurysm or (calcific) stiffening severely affects the aortic valve behavior and, consequently, the cardiovascular regulation. The compromised mechanical and hemodynamical performance of the valve are difficult to study both 'in vivo' and 'in vitro'. Computational analysis of the valve enables a study on system responses that are difficult to obtain otherwise. In this paper a numerical model of a fiber-reinforced stentless aortic valve is presented. In the computational evaluation of its clinical functioning the interaction of the valve with the blood is essential. Hence, the blood-tissue interaction is incorporated in the model using a combined fictitious domain/arbitrary Lagrange-Euler formulation, which is integrated within the Galerkin finite element method. The model can serve as a diagnostic tool for clinical purposes and as a design tool for improving existing valve prostheses or developing new concepts. Structural mechanical and fluid dynamical aspects are analyzed during the systolic course of the cardiac cycle. Results show that aortic root compliance largely influences the valve opening and closing configurations. Stresses in the delicate parts of the leaflets are substantially reduced if fiber-reinforcement is applied and the aortic root is able to expand. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据