4.5 Article

Coupling of lateral electric field and transversal faradaic processes at the conductor/electrolyte solution interface

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 107, 期 17, 页码 4143-4155

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp022459g

关键词

-

向作者/读者索取更多资源

A quantitative theory is presented for the bipolar behavior of conducting planar surfaces in a thin-layer cell of a type commonly used in electrokinetic studies. The lateral current density distribution in the cell, as dictated by the externally applied field in the solution, is formulated for the situation in which depolarization of the interface arises from transversal electron-transfer processes that occur at the two sides of the conducting surface. The treatment explicitly analyses the two limiting cases of bipolar electrodic behavior, i.e., totally irreversible electron transfer and Nernstian (mass-transfer-limited) electrodics. The spatial distribution of the electric field is calculated by means of Poisson's equation under conditions of a finite current. The results allow for a rigorous estimation of the overall bipolar faradaic current. Analytical expressions are given for the electric parameters (potential, field, local current, and bipolar faradaic current) in the case of irreversible electron transfer, and numerical analysis is performed for the reversible, Nernstian case. Deviations of the conductivity curves from the trend expected on the basis of a linear potential profile are discussed in terms of the local ohmic and faradaic contributions to the total current. The theory is supported and illustrated by experimental data for gold and aluminum surfaces in KNO3 solution, in the absence and presence of the electroactive species Fe(CN)(6)(3-)/Fe(CN)(6)(4-).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据