4.6 Article

Role of proteasomes in the degradation of short-lived proteins in human fibroblasts under various growth conditions

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1357-2725(02)00382-5

关键词

intracellular protein degradation; short-lived proteins; defective ribosomal products; proteasomes; lysosomes

向作者/读者索取更多资源

Degradation of proteins in the cells occurs by proteasomes, lysosomes and other cytosolic and organellar proteases. It is believed that proteasomes constitute the major proteolytic pathway under most conditions, especially when degrading abnormal and other short-lived proteins. However, no systematic analysis of their role in the overall degradation of truly short-lived cell proteins has been carried out. Here, the degradation of short-labelled proteins was examined in human fibroblasts by release of trichloroacetic acid-soluble radioactivity. The kinetics of degradation was decomposed into two, corresponding to short- and long-lived proteins, and the effect of proteasomal and lysosomal inhibitors on their degradation, under various growth conditions, was separately investigated. From the degradation kinetics of proteins labelled for various pulse times it can be estimated that about 30% of newly synthesised proteins are degraded with a half-life of approximately 1 h. These rapidly degraded proteins should mostly include defective ribosomal products. Deprivation of serum and confluent conditions increased the degradation of the pool of long-lived proteins in fibroblasts without affecting, or affecting to a lesser extent, the degradation of the pool of short-lived proteins. Inhibitors of proteasomes and of lysosomes prevented more than 80% of the degradation of short-lived proteins. It is concluded that, although proteasomes are responsible of about 40-60% of the degradation of short-lived proteins in normal human fibroblasts, lysosomes have also an important participation in the degradation of these proteins. Moreover, in confluent fibroblasts under serum deprivation, lysosomal pathways become even more important than proteasomes in the degradation of short-lived proteins. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据