4.5 Article

Amyloid precursor protein-processing products affect mononuclear phagocyte activation:: pathways for sAPP- and Aβ-mediated neurotoxicity

期刊

JOURNAL OF NEUROCHEMISTRY
卷 85, 期 4, 页码 925-934

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1471-4159.2003.01739.x

关键词

Alzheimer's disease; amyloid precursor protein; glutamate; microglia; neurotoxicity

向作者/读者索取更多资源

Increasing evidence strongly supports the role of glial immunity in the pathogenesis of Alzheimer's disease (AD). To investigate such events we have developed cell systems mimicking the interactions between beta-amyloid precursor protein (APP)-expressing neurons and brain mononuclear phagocytes (MP; macrophages and microglia). MP were co-cultured with neuronal cells expressing wild type APP or familial AD-linked APP mutants. The latter was derived from recombinant adenoviral constructs. Neuronal APP processing products induced MP activation, reactive oxygen species, and neurotoxic activities. These occurred without the addition of pro-inflammatory cytokines and were reversed by depletion of amyloid beta-peptide (Abeta) and secreted APP (sAPP). Neurotoxic activities were diminished by superoxide dismutase mimetics and NMDA receptor inhibitors. Microglial glutamate secretion was suppressed by the cystine-glutamate antiporter inhibitor and its levels paralleled the depletion of sAPP and Abeta from conditioned media prepared from APP-expressing neurons. The excitotoxins from activated MP were potent enough to evoke recombinant NMDA receptor-mediated inward currents expressed in vitro in the Xenopus oocytes. These results demonstrate that neuronal APP-processing products can induce oxidative neurotoxicity through microglial activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据