4.5 Review

Rapamycins - Mechanism of action and cellular resistance

期刊

CANCER BIOLOGY & THERAPY
卷 2, 期 3, 页码 222-232

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/cbt.2.3.360

关键词

rapamycins; translation initiation; cancer; resistance; therapy; ribosomal biogenesis; yeast

类别

资金

  1. NCI NIH HHS [CA23099, CA21765, CA58755, CA77776, CA96996] Funding Source: Medline

向作者/读者索取更多资源

Rapamycins are macrocyclic lactones that possess immunosuppressive, antifungal and antitumor properties. The parent compound, rapamycin, is approved as an immunosuppressive agent for preventing rejection in patients receiving organ transplantation. Two analogues, CCl-779 and RAD001 are currently being investigated as anticancer agents. Rapamycins first bind a cyclophilin FKBP12, and this complex binds and inhibits the function of mTOR (mammalian target of rapamycin) a serine/threonine (Ser/Thr) kinase with homology to phosphatidylinositol 3' kinase. Currently, as mTOR is the only identified target, this places rapamycins in a unique position of being the most selective kinase inhibitor known. Consequently these agents have been powerful tools in elucidating the role of mTOR in cellular growth, proliferation, survival and tumorigenesis. Increasing evidence suggests that mTOR acts as a central controller sensing cellular environment (nutritional status or mitogenic stimulation) and regulating translation initiation through the eukaryotic initiation factor 4E, and ribosomal p70 S6 kinase pathways. Here we review the conserved TOR signaling pathways, conceptual basis for tumor selectivity, and the mechanisms of resistance to this class of antitumor agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据