4.7 Article

Fabrication of large Ti-6Al-4V structures by direct laser deposition

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 629, 期 -, 页码 351-361

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2014.12.234

关键词

Titanium alloys; Additive manufacturing; Direct laser deposition; Hot isostatic pressing; Microstructure; Fracture behaviour

资金

  1. Technology Strategy Board (TSB), UK

向作者/读者索取更多资源

Ti-6Al-4V samples have been prepared by direct laser deposition (DLD) using varied processing conditions. Some of the as-fabricated samples were stress-relieved or hot isostatically pressed (HIPed). The microstructures of all the samples were characterised using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and the tensile properties assessed. It was found that a high laser power together with a reasonably low powder feed rate was essential for achieving minimum porosity. The build height and geometrical integrity of samples were sensitive to the specified laser nozzle moving step along the build height direction (or Z step) with a too big Z step usually leading to a build height smaller than specified height (or under build) and a too small Z step to excessive building (or excess build). Particularly, scaling-up of samples requires a smaller Z step to obtain specified build height and geometry. The as-fabricated microstructure was characterised by columnar grains together with martensitic needle structure and a small fraction of beta phase. This led generally to high tensile strengths but low elongations. The vertically machined samples showed even lower elongation than horizontally machined ones due to the presence of large lack-of-fusion pores at interlayer interfaces. HIPing effectively closed pores and fully transformed the martensites into lamellar alpha + beta phases, which considerably improved ductility but caused slight reduction in strength. With optimisation of processing conditions together with post-DLD HIPing, a couple of large spars with structural integrity comparable to conventionally manufactured parts have been fabricated. Pronounced distortion was observed after unclamping of the as-fabricated structures. HIPing on the unclamped structures was found to significantly reduce the distortion. It is suggested that DLD plus HIPing is a feasible route for manufacturing high quality and high performance aerospace structures. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据