4.6 Article

A neural-network based method for prediction of γ-turns in proteins from multiple sequence alignment

期刊

PROTEIN SCIENCE
卷 12, 期 5, 页码 923-929

出版社

WILEY
DOI: 10.1110/ps.0241703

关键词

gamma-Turns; prediction; neural networks; Weka classifiers; statistical; multiple alignment; secondary structure; Web server

向作者/读者索取更多资源

In the present study, an attempt has been made to develop a method for predicting gamma-turns in proteins. First, we have implemented the commonly used statistical and machine-learning techniques in the field of protein structure prediction, for the prediction of gamma-turns. All the methods have been trained and tested on a set of 320 nonhomologous protein chains by a fivefold cross-validation technique. It has been observed that the performance of all methods is very poor, having a Matthew's Correlation Coefficient (MCC) less than or equal to 0.06. Second, predicted secondary structure obtained from PSIPRED is used in gamma-turn prediction. It has been found that machine-learning methods outperform statistical methods and achieve an MCC of 0.11 when secondary structure information is used. The performance of gamma-turn prediction is further improved when multiple sequence alignment is used as the input instead of a single sequence. Based on this study, we have developed a method, GammaPred, for gamma-turn prediction (MCC = 0.17). The GammaPred is a neural-network-based method, which predicts gamma-turns in two steps. In the first step, a sequence-to-structure network is used to predict the gamma-turns from multiple alignment of protein sequence. In the second step, it uses a structure-to-structure network in which input consists of predicted gamma-turns obtained from the first step and predicted secondary structure obtained from PSIPRED. (A Web server based on GammaPred is available at http://www.imtech.res.in/raghava/gammapred/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据