4.6 Article

In vivo fluoroscopic analysis of the normal human knee

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.blo.0000062384.79828.3b

关键词

-

向作者/读者索取更多资源

The objective of the current study was to use fluoroscopy and computed tomography to accurately determine the three-dimensional, in vivo, weightbearing kinematics of five normal knees. Three-dimensional computer-aided design models of each subject's femur and tibia were recreated from the three-dimensional computed tomography bone density data. Three-dimensional motions for each subject then were determined for five weightbearing activities. During gait, the lateral condyle experienced -4.3 mm (range, -1.9--10.3 mm) of average motion, whereas the medial condyle moved only -0.9 mm (range, 3.4--5.8 mm). One subject experienced 5.8 mm of medial condyle motion. On average, during deep flexion activities, subjects experienced -12.7 mm (range, 1.4--29.8 mm) of lateral condyle motion, whereas the medial condyle motion only was -2.9 mm (range, 3.0--9.0 mm). One subject experienced 5.8 and 9.0 mm of medial condyle motion during gait and a deep knee bend, respectively leading to the occurrence of a lateral pivot motion. During the deep flexion activities, the subjects experienced significantly more axial rotation (> 13degrees) than gait (< 5degrees). During all five activities, the lateral condyle experienced significantly more anteroposterior translation, leading to axial rotation of the tibia relative to the femur.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据