3.8 Article

Structural characterization and comparison of RGD cell-adhesion recognition sites engineered into streptavidin

出版社

BLACKWELL MUNKSGAARD
DOI: 10.1107/S0907444903004153

关键词

-

资金

  1. NIDDK NIH HHS [DK 49655] Funding Source: Medline

向作者/读者索取更多资源

The RGD (arginine-glycine-aspartic acid) sequence is found in several important extracellular matrix proteins and serves as an adhesion ligand for members of the integrin family of cell-surface receptors. This sequence and flanking residues from fibronectin or osteopontin have been engineered into an accessible surface loop of streptavidin to create two new streptavidin variants (FN-SA or OPN-SA, respectively) that bind cells through the alpha(v)beta(3) and/or alpha(5)beta(1) integrin receptors. Their crystal structures confirm the design and construction of the mutants and provide evidence about the conformational dynamics of the RGD loops. The loops in the isomorphous crystal structures are involved in crystal-packing interactions and this stabilizes their structures. Even so, the loop in OPN-SA is slightly disordered and two of the residues are not seen in difference electron-density maps. Comparison with other experimentally determined structures of RGD loops in cell- adhesion molecules shows that these loops occupy a large subset of conformational space. This is consistent with the view that RGD loops, at least those involved in cell adhesion, sample a number of structures dynamically, a few of which display high affinity for appropriate receptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据