4.5 Article

Identification of a compound that directly stimulates phospholipase C activity

期刊

MOLECULAR PHARMACOLOGY
卷 63, 期 5, 页码 1043-1050

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.63.5.1043

关键词

-

向作者/读者索取更多资源

Phosphoinositide-specific phospholipase C (PLC) plays a pivotal role in the signal transduction of various cellular responses. However, although it is undeniably important that modulators of PLC activity be identified, no direct PLC activity modulator has been identified until now. In this study, by screening more than 10,000 different compounds in human neutrophils, we identified a compound that strongly enhances superoxide-generating activity, which is well known to be PLC-dependent. The active compound 2,4,6-trimethyl-N-(meta-3-trifluoromethylphenyl)benzenesulfonamide (m-3M3FBS) stimulated a transient intracellular calcium concentration ([Ca2+](i)) increase in neutrophils. Moreover, m-3M3FBS stimulated the formation of inositol phosphates in U937 cells, indicating that it stimulates PLC activity. The compound showed no cell-type specificity in terms of [Ca2+](i) increase in the various cell lines including leukocytes, fibroblasts, and neuronal cells. We also ruled out the possible involvement of heterotrimeric G proteins in m-3M3FBS-stimulated signaling by confirming the following: 1) pertussis toxin does not inhibit m-3M3FBS-induced [Ca2+](i) increase; 2) m-3M3FBS does not stimulate cyclic AMP generation; and 3) the inhibition of G(q) by the regulator of G protein-signaling 2 does not affect the m-3M3FBS-induced [Ca2+](i) increase. We also observed that m-3M3FBS stimulated PLC activity in vitro. The purified isoforms of PLC that were tested (i. e., beta2, beta3, gamma1, gamma2, and delta1) were activated by m-3M3FBS and showed no isoform specificity. Taken together, these results demonstrate that m-3M3FBS modulates neutrophil functions by directly activating PLC. Because m-3M3FBS is the first compound known to directly activate PLC, it should prove useful in the study of the basic molecular mechanisms of PLC activation and PLC-mediated cell signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据