4.5 Article

Differences in the BOLD fMRI response to direct and indirect cortical stimulation in the rat

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 49, 期 5, 页码 838-847

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/mrm.10428

关键词

magnetic resonance; fMRI; BOLD; cortical stimulation; transcallosal activation; rat

向作者/读者索取更多资源

Functional MRI (fMRI) exploits a relationship between neuronal activity, metabolism, and cerebral blood flow to functionally map the brain. We have developed a model of direct cortical stimulation in the rat that can be combined with fMRI and used to compare the hemodynamic responses to direct and indirect cortical stimulation. Unilateral electrical stimulation of the rat hindpaw motor cortex, via stereotaxically positioned carbon-fiber electrodes, yielded blood oxygenation level-dependent (BOLD) fMRI signal changes in both the stimulated and homotypic contralateral motor cortices. The maximal signal intensity change in both cortices was similar (stimulated = 3.7 +/- 1.7%; contralateral = 3.2 +/- 1.0%), although the response duration in the directly stimulated cortex was significantly longer (48.1 +/- 5.7 sec vs. 19.0 +/- 5.3 sec). Activation of the contralateral cortex is likely to occur via stimulation of corticocortical pathways, as distinct from direct electrical stimulation, and the response profile is similar to that observed in remote (e.g., forepaw) stimulation fMRI studies. Differences in the neuronal pool activated, or neurovascular mediators released, may account for the more prolonged BOLD response observed in the directly stimulated cortex. This work demonstrates the combination of direct cortical stimulation in the rat with fMRI and thus extends the scope of rodent fMRI into brain regions inaccessible to peripheral stimulation techniques. (C) 2003 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据