4.5 Article

Dynamics from a time series: Can we extract the phase resetting curve from a time series?

期刊

BIOPHYSICAL JOURNAL
卷 84, 期 5, 页码 2919-2928

出版社

BIOPHYSICAL SOCIETY
DOI: 10.1016/S0006-3495(03)70019-8

关键词

-

资金

  1. NINDS NIH HHS [NS-17813, R37 NS017813, R01 NS017813] Funding Source: Medline

向作者/读者索取更多资源

Recordings of the membrane potential from a bursting neuron were used to reconstruct the phase curve for that neuron for a limited set of perturbations. These perturbations were inhibitory synaptic conductance pulses able to shift the membrane potential below the most hyperpolarized level attained in the free running mode. The extraction of the phase resetting curve from such a one-dimensional time series requires reconstruction of the periodic activity in the form of a limit cycle attractor. Resetting was found to have two components. In the first component, if the pulse was applied during a burst, the burst was truncated, and the time until the next burst was shortened in a manner predicted by movement normal to the limit cycle. By movement normal to the limit cycle, we mean a switch between two well-defined solution branches of a relaxation-like oscillator in a hysteretic manner enabled by the existence of a singular dominant slow process (variable). In the second component, the onset of the burst was delayed until the end of the hyperpolarizing pulse. Thus, for the pulse amplitudes we studied, resetting was independent of amplitude but increased linearly with pulse duration. The predicted and the experimental phase resetting curves for a pyloric dilator neuron show satisfactory agreement. The method was applied to only one pulse per cycle, but our results suggest it could easily be generalized to accommodate multiple inputs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据