4.5 Article

Physical Processes Affecting Natural Depletion of Volatile Chemicals in Soil and Groundwater

期刊

VADOSE ZONE JOURNAL
卷 2, 期 2, 页码 222-230

出版社

SOIL SCI SOC AMER
DOI: 10.2136/vzj2003.2220

关键词

-

向作者/读者索取更多资源

A Fickian model is described for dispersive vapor transport due to pumping induced by barometric pressure fluctuations and periodic water table fluctuations. The approach is appropriate for time scales that are large relative to the period of induced airflow variations. Comparisons of the magnitude of dispersive fluxes with those due solely to molecular diffusion indicated that dispersive vapor transport becomes increasingly important as soil porosity decreases and as the depth to groundwater and the contaminant source increases. For soils with low air-filled porosity, barometric pumping is likely to dominate transport even for shallow soils. Barometric pumping may predominate for soils with moderate to high air-filled porosity with deeper groundwater (>5-15 m). Water table pumping is predicted to predominate over diffusion only for high-frequency fluctuations, such as tidal conditions. A steady-state model for contaminant volatilization from groundwater is presented that considers diffusive and dispersive vapor transport, unsaturated zone aqueous phase advection, and dispersive mixing in groundwater, yielding an apparent first-order decay coefficient with respect to groundwater. Predicted volatilization coefficients for perchloroethene (PCE) range from <0.001 to >0.02 d(-1) for various soil conditions and groundwater depths. Highest values are predicted for the most permeable soils. Volatilization rates are predicted to decrease with depth up to a point at which dispersive fluxes dominate over diffusion and then to increase to the extent that barometric pressure fluctuations propagate to greater depths. Vertical mixing within the saturated zone has a significant influence on volatilization from groundwater. Simple moving front and mixing cell models are presented to estimate depletion rates of soil contamination due to volatilization and leaching. Results indicate that natural depletion of residual soil NAPL may take many decades and is markedly influenced by soil conditions, hydraulic flux, and contaminant properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据