4.4 Article

Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems

期刊

BULLETIN OF MATHEMATICAL BIOLOGY
卷 65, 期 3, 页码 425-446

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/S0092-8240(03)00004-1

关键词

-

向作者/读者索取更多资源

The need to study spatio-temporal chaos in a spatially extended dynamical system which exhibits not only irregular, initial-value sensitive temporal behavior but also the formation of irregular spatial patterns, has increasingly been recognized in biological science. While the temporal aspect of chaotic dynamics is usually characterized by the dominant Lyapunov exponent, the spatial aspect can be quantified by the correlation length. In this paper, using the diffusion-reaction model of population dynamics and considering the conditions of the system stability with respect to small heterogeneous perturbations, we derive an analytical formula for an 'intrinsic length' which appears to be in a very good agreement with the value of the correlation length of the system. Using this formula and numerical simulations, we analyze the dependence of the correlation length on the system parameters. We show that our findings may lead to a new understanding of some well-known experimental and field data as well as affect the choice of an adequate model of chaotic dynamics in biological and chemical systems. (C) 2003 Society for Mathematical Biology. Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据