4.3 Article

A novel stress distribution organ in the arthropod exoskeleton

期刊

ARTHROPOD STRUCTURE & DEVELOPMENT
卷 39, 期 5, 页码 305-309

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.asd.2010.05.002

关键词

Exoskeleton; Finite element model; Struts; Stress; Strain; Joint; Merus-carpus

资金

  1. Div Of Biological Infrastructure
  2. Direct For Biological Sciences [0743460] Funding Source: National Science Foundation

向作者/读者索取更多资源

The vertebrate endoskeleton possesses a massive internal network of load-distributing trabeculae that in most locations accounts for the vast majority of bone cross sectional area. In contrast, arthropods rely on the external cuticle and its intermittent outpocketings to distribute the daily stresses of physiological loading. One of the constraints of the arthropod exoskeleton is the necessity to house the musculature involved in locomotion, feeding and etc. Because of this lack of an extensive internal load-distributing trabecular network, any load-distributing mechanism in arthropods would necessarily have to incorporate the exoskeleton. Several authors have identified structural apophysi whose functions presumably have mechanical significance, but few have been identified using quantitative analyses. This study investigates a novel stress-reducing structure arising from the articulation sites in the exoskeleton of the blue crab, Callinectes sapidus. During dissection of the merus-carpus joint and leg cuticle of the blue crab, an unique system of internal strut-like members was found radiating, both longitudinally and laterally, from the articular surface of the proximal merus segment, tapering into the diaphyseal region. This strut system, an internal outpocketing of the exoskeleton and semi-circular in cross section, mirrors the trabecular pattern seen radiating from vertebrate joint surfaces. Earlier reports of this structural system described it as a muscle attachment site and made little or no reference to potential load distribution properties. Finite element analysis (FEA) models confirm the efficacy of stress distributing properties of this articular strut system in the blue crab leg. In the models, the struts significantly reduce stress concentrations, reduce localized strains and minimize the risk of failure via buckling. Models lacking this strut system generate 94.7% larger peak von Mises stress at the articulation site, 37% higher peak displacement and 4% greater equivalent strain. The model with the struts is capable of withstanding an applied physiological load of up to 16.6 N prior to buckling, more than twice that of the model without struts (7.8 N). We suggest that this novel arthropod strut system is likely utilized at many joint surfaces at locations of high skeletal stress concentrations, is an adaptation for minimizing skeletal failure via localized buckling, and may be present in other arthropod taxa. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据