4.5 Article

Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina

期刊

出版社

PETER PEREGRINUS LTD
DOI: 10.1007/BF02348445

关键词

adhesion; nanomaterials; carbon fibres; alumina

向作者/读者索取更多资源

It is of the utmost importance to increase the activity of bone cells on the surface of materials used in the design of orthopaedic implants. Increased activity of such cells can promote either integration of these materials into surrounding bone or complete replacement with naturally produced bone if biodegradable materials are used. Osteoblasts are bone-producing cells and, for that reason, are the cells of interest in initial studies of new orthopaedic implants. If these cells are functioning normally, they lay down bone matrix onto both existing bone and prosthetic materials implanted into the body. It is generally accepted that a successful material should enhance osteoblast function, leading to more bone deposition and, consequently, increased strength of the interface between the material and juxtaposed bone. The present study provided the first evidence of greater osteoblast function on carbon and alumina formulations that mimic the nano-dimensional crystal geometry of hydroxyapatite found in bone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据