4.6 Article

Separability criterion for separate quantum systems

期刊

PHYSICAL REVIEW A
卷 67, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.67.052104

关键词

-

向作者/读者索取更多资源

Entanglement, or quantum inseparability, is a crucial resource in quantum information applications, and therefore the experimental generation of separated yet entangled systems is of paramount importance. Experimental demonstrations of inseparability with light are not uncommon, but such demonstrations in physically well-separated massive systems, such as distinct gases of atoms, are new and present significant challenges and opportunities. Rigorous theoretical criteria are needed for demonstrating that given data are sufficient to confirm entanglement. Such criteria for experimental data have been derived for the case of continuous-variable systems obeying the Heisenberg-Weyl (position-momentum) commutator. To address the question of experimental verification more generally, we develop a sufficiency criterion for arbitrary states of two arbitrary systems. When applied to the recent study by Julsgaard, Kozhekin, and Polzik [Nature 413, 400 (2001)] of spin-state entanglement of two separate, macroscopic samples of atoms, our criterion confirms the presence of spin entanglement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据