4.4 Article

Cannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 89, 期 5, 页码 2647-2654

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00268.2002

关键词

-

向作者/读者索取更多资源

Cannabinoid CB1 receptors have been detected in retinas of numerous species, with prominent labeling in photoreceptor terminals of the chick and monkey. CB1 labeling is well-conserved across species, suggesting that CB1 receptors might also be present in photoreceptors of the tiger salamander. Synaptic transmission in vertebrate photoreceptors is mediated by L-type calcium currents-currents that are modulated by CB1 receptors in bipolar cells of the tiger salamander. Presence of CB1 receptors in photoreceptor terminals would therefore be consistent with presynaptic modulation of synaptic transmission, a role seen for cannabinoids in other parts of the brain. Here we report immunohistochemical and electrophysiological evidence for the presence of functional CB1 receptors in rod and cone photoreceptors of the tiger salamander. The cannabinoid receptor agonist WIN 55212-2 enhances calcium currents of rod photoreceptors by 39% but decreases calcium currents of large single cones by 50%. In addition, WIN 55212-2 suppresses potassium currents of rods and large single cones by 44 and 48%, respectively. Thus functional CB1 receptors, present in the terminals of rod and cone photoreceptors, differentially modulate calcium and potassium currents in rods and large single cones. CB1 receptors are therefore well positioned to modulate neurotransmitter release at the first synapse of the visual system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据