4.3 Article

Store-operated Ca2+ channels in prostate cancer epithelial cells:: function, regulation, and role in carcinogenesis

期刊

CELL CALCIUM
卷 33, 期 5-6, 页码 357-373

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0143-4160(03)00049-6

关键词

epithelial cells; carcinogenesis; channels

向作者/读者索取更多资源

Ca2+ homeostasis mechanisms, in which the Ca2+ entry pathways play a key role, are critically involved in both normal function and cancerous transformation of prostate epithelial cells. Here, using the lymph node carcinoma of the prostate (LNCaP) cell line as a major experimental model, we characterize prostate-specific store-operated Ca2+ channels (SOCs)-a primary Ca2+ entry pathway for non-excitable cells-for the first time. We show that prostate-specific SOCs share major store-dependent, kinetic, permeation, inwardly rectifying, and pharmacological (including dual, potentiation/inhibition concentration-dependent sensitivity to 2-APB) properties with classical Ca2+ release-activated Ca2+ channels (CRAC), but have a higher single channel conductance (3.2 and 12 pS in Ca2+- and Na+-permeable modes, respectively). They are subject to feedback inhibition via Ca2+-dependent PKC, CaMK-II and CaM regulatory pathways and are functionally dependent on caveolae integrity. Caveolae also provide a scaffold for spatial co-localization of SOCs with volume-regulated anion channels (VRAC) and their Ca2+-mediated interaction. The TRPC1 and TRPV6 members of the transient receptor potential (TRP) channel family are the most likely molecular candidates for the formation of prostate-specific endogenous SOCs. Differentiation of LNCaP cells to an androgen-insensitive, apoptotic-resistant neuroendocrine phenotype downregulates SOC current. We conclude that prostate-specific SOCs are important determinants in the transition to androgen-independent prostate cancer. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据