4.0 Article

Formation of Invadopodia-like Structures by Synovial Cells Promotes Cartilage Breakdown in Collagen-Induced Arthritis Involvement of the Protein Tyrosine Kinase Src

期刊

ARTHRITIS AND RHEUMATISM
卷 63, 期 6, 页码 1591-1602

出版社

WILEY-BLACKWELL
DOI: 10.1002/art.30305

关键词

-

资金

  1. Canadian Institutes for Health Research [MOP-86634, MOP-89810]
  2. Fondation pour la Recherche Medicale

向作者/读者索取更多资源

Objective. Invasive synovial fibroblasts are suggested to be the major effectors of cartilage and bone destruction, and this aggressive phenotype can lead to irreversible damage. In cancer cells, invasion across tissue boundaries and metastasis have recently been shown to depend on the capacity of the cells to breach the basement membrane, a process that was linked to the formation of the actin-rich cell protrusions called invadopodia. This study was undertaken to investigate whether arthritic synovial cells use invadopodia to invade and degrade cartilage components. Methods. Fibroblast-like synoviocytes (FLS) from control rats or rats with collagen-induced arthritis (CIA) were cultured on fluorescent matrix in the presence of Src inhibitors or were transfected with wild-type or variants of Src kinases. The in vivo effect of Src inhibition on cartilage degradation and invasion was studied in a rat model of CIA. Results. FLS from rats with CIA produced more invadopodia-like structures than did FLS from control rats, leading to increased extracellular matrix degradation. Furthermore, c-Src activation was increased in synovial cells from rats with CIA, and Src activity was found to mediate the formation of invadopodia. Pharmacologic blockade of Src activity by PP2 or intraarticular expression of a c-Src-specific short hairpin RNA in the CIA model reduced synovial membrane hyperplasia and cartilage degradation, an event linked to decreased invadopodia formation by synovial fibroblasts. Conclusion. This study demonstrates that inhibition of invadopodia formation in arthritic synovial cells leads to a direct effect on extracellular matrix degradation in vitro and in vivo, making invadopodia a relevant therapeutic target for interfering with this process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据