3.8 Article

The effects of ergogenic compounds on myogenic satellite cells

期刊

MEDICINE AND SCIENCE IN SPORTS AND EXERCISE
卷 35, 期 5, 页码 769-776

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1249/01.MSS.0000065005.96298.01

关键词

muscle stem cell culture; nutriceuticals; L-glutamine; creatine; ephedrine alkaloids; pyruvate; androstenedione; DHEA

向作者/读者索取更多资源

Purpose: A series of studies were conducted in which compounds commonly shown to be ergogenic aids for strength athletes if taken orally were evaluated for their ability to directly induce postnatal muscle stem cell proliferation or differentiation/fusion in vitro. Methods: Compounds tested were creatine monohydrate, creatine pyruvate, L-glutamine, dehydroepiandrosterone (DHEA), androstenedione, Ma Huang (Ephedra sinensis) extract, and Zhi Shi (Citrus aurantium) extract. Dulbecco's modified eagle medium, supplemented with minimal levels of serum and antibiotics, was used as the initial vehicle for the test compounds. Subsequently, a defined treatment medium termed ITTC was used. Satellite cells were exposed to the test compounds for the indicated times and then evaluated by counting mononucleated and multinucleated (fused) cells. Results: In serum-containing media, none of the treatment groups displayed increased proliferation over that of the control. However, in the differentiation cultures, 0.10% creatine monohydrate increased differentiation over that of the control cultures. When 0.10% creatine monohydrate was added to defined media formulations, all treatments but one demonstrated increased differentiation over the 0.5% serum control. Time course experiments, which followed the effect of 0.10% creatine monohydrate contained in ITTC defined media over 120 h, suggested that cells exposed to this treatment differentiated earlier and to a greater level than cells exposed to ITTC alone. Conclusions: Creatine in the monohydrate form induced differentiation of myogenic satellite cells. Other agents examined did not increase satellite cell proliferation or differentiation. These results provide initial evidence for a mechanistic understanding of observed effects in vivo of increased muscular size and strength from creatine supplementation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据