4.8 Article

Targeted inhibition of p38 MAPK promotes hypertrophic cardiomyopathy through upregulation of calcineurin-NEAT signaling

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 111, 期 10, 页码 1475-1486

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI200317295

关键词

-

资金

  1. NHLBI NIH HHS [F32 HL010336, T32 HL007382, 5T32 HL07382, HL10336] Funding Source: Medline

向作者/读者索取更多资源

The MAPKs are important transducers of growth and stress stimuli in virtually all eukaryotic cell types. In the mammalian heart, MAPK signaling pathways have been hypothesized to regulate myocyte growth in response to developmental signals or physiologic and pathologic stimuli. Here we generated cardiac-specific transgenic mice expressing dominant-negative mutants of p38alpha, MKK3, or MKK6. Remarkably, attenuation of cardiac p38 activity produced a progressive growth response and myopathy in the heart that correlated with the degree of enzymatic inhibition. Moreover, dominant-negative p38a, MKK3, and MKK6 transgenic mice each showed enhanced cardiac hypertrophy following aortic banding, Ang II infusion, isoproterenol infusion, or phenylephrine infusion for 14 days. A mechanism underlying this enhanced-growth profile was suggested by the observation that dominant-negative p38a directly augmented nuclear factor of activated T cells (NFAT) transcriptional activity and its nuclear translocation. In vivo, NFAT-dependent luciferase reporter transgenic mice showed enhanced activation in the presence of the dominant-negative p38a transgene before and after the onset of cardiac hypertrophy. More significantly, genetic disruption of the calcineurin Abeta gene rescued hypertrophic cardiomyopathy and depressed functional capacity observed in p38-inhibited mice. Collectively, these observations indicate that reduced p38 signaling in the heart promotes myocyte growth through a mechanism involving enhanced calcineurin-NFAT signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据