4.7 Article

Crystal structure of proteus vulgaris chondroitin sulfate ABC lyase I at 1.9 A resolution

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 328, 期 3, 页码 623-634

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0022-2836(03)00345-0

关键词

glycosaminoglycan lyase; GAG lyase ABC; beta-elimination; catalytic site; chondroitin sulfate

向作者/读者索取更多资源

Chondroitin Sulfate ABC Iyase I from Proteus vulgaris is an endolytic, broad-specificity glycosaminoglycan Iyase, which degrades chondroitin, chondroitin-4-sulfate, dermatan sulfate, chondroitin-6-sulfate, and hyaluronan by beta-elimination of 1,4-hexosaminidic bond to unsaturated disaccharides and tetrasaccharides. Its structure revealed three domains. The N-terminal domain has a fold similar to that of carbohydrate-binding domains of xylanases and some lectins, the middle and C-terminal domains are similar to the structures of the two-domain chondroitin lyase AC and bacterial hyaluronidases. Although the middle domain shows a very low level of sequence identity with the catalytic domains of chondroitinase AC and hyaluronidase, the residues implicated in catalysis of the latter enzymes are present in chondroitinase ABC I. The substrate-binding site in chondroitinase ABC I is in a wide-open cleft, consistent with the endolytic action pattern of this enzyme. The tryptophan residues crucial for substrate binding in chondroitinase AC and hyaluronidases are lacking in chondroitinase ABC I. The structure of chondroitinase ABC I provides a framework for probing specific functions of active-site residues for understanding the remarkably broad specificity of this enzyme and perhaps engineering a desired specificity. The electron density map showed clearly that the deposited DNA sequence for residues 495-530 of chondroitin ABC lyase I, the segment containing two putative active-site residues, contains a frame-shift error resulting in an incorrectly translated amino acid sequence. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据