4.6 Article

Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition

期刊

CHEMICAL PHYSICS LETTERS
卷 372, 期 5-6, 页码 745-749

出版社

ELSEVIER
DOI: 10.1016/S0009-2614(03)00501-3

关键词

-

向作者/读者索取更多资源

The growth behavior of carbon nanotubes synthesized from C2H2 using thermal chemical vapor deposition method has been investigated. The formation of catalytic cobalt nanoparticles was much enhanced when using NH3 as the environment gas, whereas NH3 introduced during nanotubes growth does not play a key role in growing the vertically aligned nanotubes. The role of NH3 is to obtain the high density of nucleation-sites for nanotube growth by inhibiting amorphous carbon generation in the initial stage of synthesis. We found unexpected behavior in terms of the length and growth time during nanotube growth. The length of the nanotubes is inversely proportional to the size of nanoparticle just in the initial stages of growth and thick catalyst. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据