4.7 Article

A numerical investigation of the effect of particle clustering on the mechanical properties of composites

期刊

ACTA MATERIALIA
卷 51, 期 8, 页码 2355-2369

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1359-6454(03)00043-0

关键词

finite element simulations; composites; clustering; fracture

向作者/读者索取更多资源

The effect of the reinforcement spatial distribution on the mechanical behavior was investigated in model metal-matrix composites. Homogeneous microstructures were made up of a random dispersion of spheres. The inhomogeneous ones were idealized as an isotropic random dispersion of spherical regions-which represent the clusters-with the spherical reinforcements concentrated around the cluster center. The uniaxial tensile stress-strain curve was obtained by finite element analysis of three-dimensional multiparticle cubic unit cells, which stood as representative volume elements of each material, with periodic boundary conditions. The numerical simulations showed that the influence of reinforcement clustering on the macroscopic composite behavior was weak, but the average maximum principal stress in the spheres-and its standard deviation-were appreciably higher in the inhomogeneous materials than in the homogeneous ones (up to 12 and 60%, respectively). The fraction of broken spheres as a function of the applied strain were computed from experimental values of the Weibull parameters for the strength of the spheres, and the local stress computed in the simulations. It was found that the presence of clustering greatly increased (by a factor between 3 and 6) the fraction of broken spheres, leading to a major reduction of the composite flow stress and ductility. (C) 2003 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据