4.0 Article

Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis

期刊

ARTHRITIS AND RHEUMATISM
卷 58, 期 4, 页码 990-1000

出版社

WILEY-LISS
DOI: 10.1002/art.23287

关键词

-

资金

  1. NIAID NIH HHS [R01 AI044142-10, R01 AI044142, R01-AI-44142] Funding Source: Medline
  2. NIAMS NIH HHS [R01 AR041974-14, R01-AR-41974, R01 AR042527-15, R01 AR041974, R01 AR042527, R01-AR-42527] Funding Source: Medline

向作者/读者索取更多资源

Objective. In rheumatoid arthritis (RA), telomeres of lymphoid and myeloid cells are age-inappropriately shortened, suggesting excessive turnover of hematopoietic precursor cells (HPCs). The purpose of this study was to examine the functional competence (proliferative capacity, maintenance of telomeric reserve) of CD34+ HPCs in RA. Methods. Frequencies of peripheral blood CD34+,CD45+ HPCs from 63 rheumatoid factor-positive RA patients and 48 controls matched for age, sex, and ethnicity were measured by flow cytometry.. Proliferative burst, cell cycle dynamics, and induction of lineage-restricted receptors were tested in purified CD34+ HPCs after stimulation with early hematopoietins. Telomere sequences were quantified by real-time polymerase chain reaction. HPC functions were correlated with the duration, activity, and severity of RA as well as its treatment. Results. In healthy donors, CD34+ HPCs accounted for 0.05% of nucleated cells; their numbers were strictly age dependent and declined at a rate of 1.3% per year. In RA patients, CD34+ HPC frequencies were age-independently reduced to 0.03%. Upon growth factor stimulation, control HPCs passed through 5 replication cycles over 4 days. In contrast, RA-derived HPCs completed only 3 generations. Telomeres of RA CD34+ HPCs were age-inappropriately shortened by 1,600 bp. All HPC defects were independent of disease duration, disease activity, and smoking status, and were present to the same degree in untreated patients. Conclusion. In RA, circulating bone marrow-derived progenitor cells were diminished, and concentrations stagnated at levels typical of those in old control subjects. HPCs from RA patients displayed growth factor nonresponsiveness and sluggish cell cycle progression; marked telomere shortening indicated proliferative stress-induced senescence. Defective HPC function independent of disease activity markers suggests bone marrow failure as a potential pathogenic factor in RA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据