4.5 Article

Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells

期刊

JOURNAL OF CELL SCIENCE
卷 116, 期 10, 页码 2015-2028

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.00417

关键词

embryonic stem cells; cartilage; BMP; TGF beta; PDGF

向作者/读者索取更多资源

The totipotent embryonic stem cell generates various mesodermal cells when stimulated with BMP4. Among the resulting cells, those expressing flk-1 and/or PDGFRalpha displayed chondrogenic activity in the presence of TGFbeta3 and expressed cartilage-specific genes in 7 to 16 day pellet cultures. Depositions of cartilage matrix and type II collagen were detected by day 14. TGFbeta-stimulated chondrogenesis was synergistically enhanced by PDGF-BB, resulting in a larger cartilage particle filled with a cartilaginous area containing type H collagen, with a surface cell layer expressing type I collagen. In contrast, noggin inhibited both the TGFbeta- and TGFbeta+PDGF-stimulated cartilage formation, suggesting that a BMP-dependent pathway is involved. In fact, replacement of TGFbeta3 with BMP4 on days 10 to 12 markedly elevated the cartilage matrix deposition during the following 1 to 8 days. Moreover, culture with TGFbeta3 and PDGF-BB, followed by the incubation with BMP4 alone, resulted in a cartilage particle lacking type I collagen in the matrix and the surface layer, which suggests hyaline cartilage formation. Furthermore, such hyaline cartilage particles were mineralized. These studies indicate that the PDGFRalpha(+) and/or flk-1(+) cells derived from embryonic stem cells possess the full developmental potential toward chondrocytes, in common with embryonic mesenchymal cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据