4.6 Article

Solid immersion lens-enhanced nano-photoluminescence: Principle and applications

期刊

JOURNAL OF APPLIED PHYSICS
卷 93, 期 10, 页码 6265-6272

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1567035

关键词

-

向作者/读者索取更多资源

We demonstrate a far-field nano-photoluminescence setup based on the combination of a hemispherical solid immersion lens (SIL) with a confocal microscope. The spatial resolution is confirmed to be 0.4 times the wavelength in vacuum in terms of half width at half maximum. The collection efficiency is found to be about five times higher than the same microscope without SIL, which is consistent with our theoretical analysis. We investigate in detail the influence of an air gap between the SIL and the sample surface on the system performance, and prove both experimentally and theoretically the tolerance of this far-field system to an air gap of several micrometers. These features make the present setup an ideal system for spatially resolved spectroscopy of semiconductor nanostructures. In particular, we show two examples of such applications in which the present setup is clearly suitable: Studies of excitonic transport in quantum wells and spectroscopy of single quantum dots with emphasis on polarization dependence and weak-signal detection. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据