4.6 Article

Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation

期刊

JOURNAL OF APPLIED PHYSICS
卷 93, 期 10, 页码 8274-8276

出版社

AIP Publishing
DOI: 10.1063/1.1558693

关键词

-

向作者/读者索取更多资源

Magnetic flux leakage (MFL) methods are commonly used in the nondestructive evaluation (NDE) of ferromagnetic materials. An important problem in MFL NDE is the determination of flaw parameters such as the flaw length, depth, and shape (profile) from the measured values of the flux density B. Commonly used methods use a forward model in a loop to determine B for a given set of flaw parameters. This approach iteratively adjusts the flaw parameters to minimize the error between the measured and predicted values of B. This article proposes the use of neural networks as forward models. The proposed approach uses two neural networks in feedback configuration-a forward network and an inverse network. The second network is used to predict the profile given the measured value of B, and acts to constrain the solution space. Results of applying these methods to MFL data obtained from a two-dimensional finite-element model, with rectangular flaws of various dimensions, are presented. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据