4.7 Article

Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries

期刊

CIRCULATION RESEARCH
卷 92, 期 9, 页码 992-1000

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000070881.65194.8F

关键词

15-lipoxygenase; 15-hydroxyeicosatetraenoic acid; hypoxic pulmonary vasoconstriction; trihydroxyeicosatrienoic acid; eicosanoids

资金

  1. NHLBI NIH HHS [R01 HL-57075, R01 HL-49294, HL-37981] Funding Source: Medline
  2. PHS HHS [P01 59996] Funding Source: Medline

向作者/读者索取更多资源

Hypoxia causes localized pulmonary arterial (PA) constriction to divert blood flow to optimally ventilated regions of the lung. The biochemical mechanisms for this have remained elusive, especially during prolonged exposures to reduced PO2. We have evidence that subacute hypoxia activates 15-lipoxygenase (15-LO) in small PAs of neonatal rabbits maintained for 9 days in hypoxic environments (FIO2=0.12) compared with siblings raised under normoxia. PA microsomal products of 15-LO, 15-hydroxyeicosatetraenoic acid (HETE), 11,14,15-trihydroxyeicosatrienoic acid (THETA), and 11,12,15-THETA were identified by gas chromatography/mass spectrometry. Increased amounts of these products are synthesized in vivo and in vitro by the lungs of animal raised in hypoxic versus normoxic environments. 15-HETE formation is attenuated by lipoxygenase, but not cytochrome P450 or cyclooxygenase inhibitors. Activation of 15-LO is associated with translocation of the enzyme from the cytosol to membrane as seen by Western immunoblotting. Immunohistochemical analysis demonstrates that 15-LO expression is clearly localized in vascular cells in lungs from normoxic and hypoxic kits. 15-HETE causes concentration-dependent constriction of PA rings from animals exposed to hypoxic but not normoxic environments. In addition, lipoxygenase inhibitors reduce phenylephrine-induced constriction of PA rings. Therefore, subacute hypoxia increases expression of and activates 15-LO, and enhances sensitivity of pulmonary arteries to its product, 15-HETE. Because 15-HETE is a constrictor in this vascular bed, it may play an important role in hypoxia-induced pulmonary vasoconstriction in rabbit kits. Although a clear causal relationship remains to be demonstrated, these data suggest a previously unrecognized role for 15-LO in hypoxic vasoconstriction in neonatal mammals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据