4.6 Article

Mitochondrial regulation of synaptic plasticity in the hippocampus

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 20, 页码 17727-17734

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M212878200

关键词

-

资金

  1. NICHD NIH HHS [HD24064] Funding Source: Medline
  2. NIMH NIH HHS [MH57014] Funding Source: Medline
  3. NINDS NIH HHS [F31NS42488] Funding Source: Medline

向作者/读者索取更多资源

Synaptic mechanisms of plasticity are calcium-dependent processes that are affected by dysfunction of mitochondrial calcium buffering. Recently, we observed that mice deficient in mitochondrial voltage-dependent anion channels, the outer component of the mitochondrial permeability transition pore, have impairments in learning and hippocampal synaptic plasticity, suggesting that the mitochondrial permeability transition pore is involved in hippocampal synaptic plasticity. In this study, we examined the effect on synaptic transmission and plasticity of blocking the permeability transition pore with low doses of cyclosporin A and found a deficit in synaptic plasticity and an increase in base-line synaptic transmission. Calcium imaging of presynaptic terminals revealed a transient increase in the resting calcium concentration immediately upon incubation with cyclosporin A that correlated with the changes in synaptic transmission and plasticity. The effect of cyclosporin A on presynaptic calcium was abolished when mitochondria were depolarized prior to cyclosporin A exposure, and the effects of cyclosporin A and mitochondrial depolarization on presynaptic resting calcium were similar, suggesting a mitochondrial locus of action of cyclosporin A. To further characterize the calcium dynamics of the mitochondrial permeability transition pore, we used an in vitro assay of calcium handling by isolated brain mitochondria. Cyclosporin A-exposed mitochondria buffered calcium more rapidly and subsequently triggered a more rapid mitochondrial depolarization. Similarly, mitochondria lacking the voltage-dependent anion channel 1 isoform depolarized more readily than littermate controls. The data suggest a role for the mitochondrial permeability transition pore and voltage-dependent anion channels in mitochondrial synaptic calcium buffering and in hippocampal synaptic plasticity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据