4.6 Article

Turnover of binding sites for transcription factors involved in early Drosophila development

期刊

GENE
卷 310, 期 -, 页码 215-220

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-1119(03)00556-0

关键词

regulatory evolution; binding site turnover; enhancer evolution; positional weight matrices; developmental enhancers

向作者/读者索取更多资源

Despite the importance of cis-regulatory regions in evolution, little is know about their evolutionary dynamics. In this report, we analyze the process of evolution of binding sites for transcription factors using as a model a well characterized system, the Drosophila early developmental enhancers. We compare the sequences of eight enhancer regions for early developmental genes between Drosophila melanogaster and other two species, Drosophila virilis and Drosophila pseudoobscura, searching for the presence/absence of 104 biochemically verified binding sites from D. melanogaster. We also modeled the binding specificity of each binding site by the use of well-defined positional weight matrices (PWMs). The comparisons showed that turnover of binding sites seems to fit a molecular clock, at an approximate rate of 0.94% of gain/loss of binding sites per million years. This intense turnover affects both high and low affinity binding sites at the same extent. Furthermore, the subset of overlapping binding sites is also subjected to this high turnover. Conserved binding sites seem to be constrained to maintain not only location but also the exact sequence at each particular position. Finally, we detected a significant decrease in mean PWM scores for the D. virilis binding sites in the case of Hunchback. Possible explanations for this fact are discussed. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据