4.6 Review

Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 21, 页码 18705-18708

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.R300001200

关键词

-

资金

  1. NEI NIH HHS [R01 EY010329, R01 EY010329-10, T32 EY07031] Funding Source: Medline

向作者/读者索取更多资源

Cyclic nucleotide-gated (CNG) ion channels mediate sensory transduction in olfactory sensory neurons and retinal photoreceptor cells. In these systems, internal calcium/calmodulin (Ca2+/CaM) inhibits CNG channels, thereby having a putative role in sensory adaptation. Functional differences in Ca2+/CaM-dependent inhibition depend on the different subunit composition of olfactory and rod CNG channels. Recent evidence shows that three subunit types (CNGA2, CNGA4, and CNGB1b) make up native olfactory CNG channels and account for the fast inhibition of native channels by Ca2+/CaM. In contrast, two subunit types (CNGA1 and CNGB1) appear sufficient to mirror the native properties of rod CNG channels, including the inhibition by Ca2+/CaM. Within CNG channel tetramers, specific subunit interactions also mediate Ca2+/CaM-dependent inhibition. In olfactory CNGA2 channels, Ca2+/CaM binds to an N-terminal region and disrupts an interaction between the N- and C-terminal regions, causing inhibition. Ca2+/CaM also binds the N-terminal region of CNGB1 subunits and disrupts an intersubunit, N- and C-terminal interaction between CNGB1 and CNGA1 subunits in rod channels. However, the precise N- and C-terminal regions that form these interactions in olfactory channels are different from those in rod channels. Here, we will review recent advances in understanding the subunit composition and the mechanisms and roles for Ca2+/CaM-dependent inhibition in olfactory and rod CNG channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据