4.6 Article

Production, purification, and functional analysis of recombinant human and mouse 17β-hydroxysteroid dehydrogenase type 7

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0006-291X(03)00694-6

关键词

17-ketosteroid reductase.; 3 beta-ketosteroid reductase; membrane protein; steroid metabolism; chromosomal localization

向作者/读者索取更多资源

17beta-Hydroxysteroid dehydrogenases (17HSDs) have a central role in the regulation of the biological activity of sex steroid hormones. There is increasing evidence that in addition to their importance in gonads, these hormones also have substantial metabolic roles in a variety of peripheral tissues. In the present study, the cDNA of human 17HSD type 7 was cloned. In silico, the gene corresponding to the cDNA was localized on chromosome 1q23, close to the locus of hereditary prostate cancer I (HPCl) (1q24-25) and primary open-angle glaucoma (GLClA) (1q23-25). Further, a pseudogene was found on chromosome 1q44, close to the locus of predisposing for early-onset prostate cancer (PCaP) (1q42.2-43). Both human (h17HSD7) and mouse 17HSD type 7 (m17HSD7) were for the first time produced as recombinant proteins and purified for functional analyses. Further, kinetic parameters and specific activities were described. h17HSD7 converted estrone (E1) to a more potent estrogen, estradiol (E2), and dihydrotestosterone (DHT), a potent androgen, to an estrogenic metabolite 5alpha-androstane-3beta, 17p-diol (3 A-diol) equally, thereby catalyzing the reduction of the keto group in either 17- or 3-position of the substrate. Minor 3betaHSD-like activity towards progesterone (P) and 20-hydroxyprogesterone (20-OH-P), leading to the inactivation of P by h17HSD7, was also detected. m17HSD7 efficiently catalyzed the reaction from El to E2 and moderately converted DHT to an inactive metabolite 5alpha-androstane-3alpha,17beta-diol (3alphaA-diol) and to an even lesser degree 3betaA-diol. The mouse enzyme did not metabolize P or 20-OH-P. The expression of 17HSD type 7 was observed widely in human tissues, most distinctly in adrenal gland, liver, lung, and thymus. Based on the enzymatic characteristics and tissue distribution, we conclude that h17HSD7 might be an intracrine regulator of steroid metabolism, fortifying the estrogenic milieu in peripheral tissues. (C) 2003 Elsevier Science (USA). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据