4.7 Article

Clinical-Grade Human Neural Stem Cells Promote Reparative Neovascularization in Mouse Models of Hindlimb Ischemia

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.113.302592

关键词

angiogenesis inducing agents; neural stem cells; peripheral arterial disease; renal circulation

资金

  1. ReNeuron Limited
  2. MRC [MR/J002593/1] Funding Source: UKRI
  3. Medical Research Council [MR/J002593/1] Funding Source: researchfish

向作者/读者索取更多资源

Objective CTX0E03 (CTX) is a clinical-grade human neural stem cell (hNSC) line that promotes angiogenesis and neurogenesis in a preclinical model of stroke and is now under clinical development for stroke disability. We evaluated the therapeutic activity of intramuscular CTX hNSC implantation in murine models of hindlimb ischemia for potential translation to clinical studies in critical limb ischemia. Approach and Results Immunodeficient (CD-1 Fox(nu/nu)) mice acutely treated with hNSCs had overall significantly increased rates and magnitude of recovery of surface blood flow (laser Doppler), limb muscle perfusion (fluorescent microspheres, P<0.001), and capillary and small arteriole densities in the ischemic limb (fluorescence immunohistochemistry, both P<0.001) when compared with the vehicle-treated group. Hemodynamic and anatomic improvements were dose related and optimal at a minimum dose of 3x10(5) cells. Dose-dependent improvements in blood flow and increased vessel densities by hNSC administration early after ischemia were confirmed in immunocompetent CD-1 and streptozotocin-induced diabetic mice, together with marked reductions in the incidence of necrotic toes (P<0.05). Delayed administration of hNSCs, 7 days after occlusion, produced restorative effects when comparable with acute treatment of 35 days after hindlimb ischemia. Histological studies in hindlimb ischemia immunocompetent mice for the first 7 days after treatment revealed short-term hNSC survival, transient elevation of early host muscle inflammatory, and angiogenic responses and acceleration of myogenesis. Conclusions hNSC therapy represents a promising treatment option for critical limb ischemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据