4.8 Article

Surfaces designed for charge reversal

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 125, 期 21, 页码 6428-6433

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja028338b

关键词

-

向作者/读者索取更多资源

We have created surfaces which switch from cationic at pH < 3 to anionic at pH > 5, by attaching aminodicarboxylic acid units to silica and gold substrates. Charge reversal was demonstrated by monitoring the adsorption of cationic dyes (methylene blue and a tetracationic porphyrin) and an anionic sulfonated porphyrin, at a range of pH using UV-vis absorption and reflection spectroscopy. The cationic dyes bind under neutral conditions (pH 5-7) and are released at pH 1-4, whereas the anionic dye binds under acidic conditions (pH 1-4) and is released at pH 5-7. Gold surfaces were functionalized with two different amphoteric disulfides with short (CH2)(2) and long (CH2)(10)CONH(CH2)(6) linkers; the longer disulfide gave surfaces exhibiting charge reversal in a narrower pH range. Adsorption is much faster on the functionalized gold (t(1/2) = 62 s) than on functionalized silica (t(1/2) = 6900 s), but the final extents of coverage on both surface are similar, for a given dye at a given pH, with maximal coverages of around 2 molecules nm(-2). These charge-reversal processes are reversible and can be repeatedly cycled by changing the pH. We have also created surfaces which undergo irreversible proton-triggered charge switching, using a carbamate-linked thiol carboxylic acid which cleaves in acid. These surfaces are versatile new tools for controlling electrostatic self-assembly at surfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据