4.5 Article

On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils

期刊

CANADIAN GEOTECHNICAL JOURNAL
卷 40, 期 3, 页码 616-628

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/T03-013

关键词

permeability; prediction; gradation curve; specific surface

向作者/读者索取更多资源

The saturated hydraulic conductivity of a soil can be predicted using empirical relationships, capillary models, statistical models, and hydraulic radius theories. A well-known relationship between permeability and the properties of pores was proposed by Kozeny and later modified by Carman. The resulting equation is largely known as the Kozeny-Carman (KC) equation, although the two authors never published together. In the geotechnical literature, there is a large consensus that the KC equation applies to sands but not to clays. This view, however, is supported only by partial demonstration. This paper evaluates the background and the validity of the KC equation using laboratory permeability tests. Test results were taken from publications that provided all of the information needed to make a prediction: void ratio, and, either the measured specific surface for cohesive soils, or the gradation curve for noncohesive soils. The paper shows how to estimate the specific surface of a noncohesive soil from its gradation curve. The results presented here show that, as a general rule, the KC equation predicts fairly well the saturated hydraulic conductivity of most soils. Many of the observed discrepancies can be related to either practical reasons (e.g., inaccurate specific surface value; steady flow not reached; unsaturated specimens, etc.) or theoretical reasons (some water is motionless; hydraulic conductivity of soils is anisotropic). These issues are discussed in relation to the predictive capabilities of the KC equation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据