4.7 Article

Serum-Glucocorticoid Regulated Kinase 1 Regulates Alternatively Activated Macrophage Polarization Contributing to Angiotensin II-Induced Inflammation and Cardiac Fibrosis

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.112.248732

关键词

angiotensin II; fibrosis; inflammation; macrophage; serum-glucocorticoid regulated kinase

资金

  1. Chinese Ministry of Science and Technology [2012CB522205, 2012CB517802]
  2. National Science Foundation of China [30888004, 31090363, 81170120]
  3. Beijing Natural Science Foundation [7102024]

向作者/读者索取更多资源

Objective-Inflammatory responses play a pivotal role in the pathogenesis of hypertensive cardiac remodeling. Macrophage recruitment and polarization contribute to the development of cardiac fibrosis. Although serum-glucocorticoid regulated kinase 1 (SGK1) is a key mediator of fibrosis, its role in regulating macrophage function leading to cardiac fibrosis has not been investigated. We aimed to determine the mechanism by which SGK1 regulates the cardiac inflammatory process, thus contributing to hypertensive cardiac fibrosis. Methods and Results-After angiotensin II infusion in mice, cardiac hypertrophy and fibrosis developed in wild-type but not SGK1 knockout mice, with equal levels of hypertension in both groups. Compared with wild-type hearts, SGK1 knockout hearts showed less infiltration of leukocytes and macrophages. Importantly, SGK1 deficiency led to decreased proportion of alternatively activated (M2) macrophages and increased levels of profibrotic cytokines. Angiotensin II infusion induced phosphorylation and nuclear localization of signal transducer and activator of transcription 3 (STAT3) whereas SGK1 knockout hearts showed this effect attenuated. In a 3-dimensional peptide gel culture, inhibition of STAT3 suppressed differentiation into M2 macrophages. Coculture of macrophages with cardiac fibroblasts in 3-dimensional peptide gel stimulated the expression of alpha-smooth muscle actin and collagen in cardiac fibroblasts. However, SGK1 knockout mice with macrophage deficiency showed reduced fibroblast-to-myofibroblast transition. Conclusion-SGK1 may play an important role in macrophage recruitment and M2 macrophage activation by activating the STAT3 pathway, which leads to angiotensin II-induced cardiac fibrosis. (Arterioscler Thromb Vasc Biol. 2012;32:1675-1686.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据