4.5 Article

Calcium-activated cationic channel in rat sensory neurons

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 17, 期 12, 页码 2630-2638

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1460-9568.2003.02706.x

关键词

Ca2+-activated channel; flufenamate; pain; sensory neuron

向作者/读者索取更多资源

Ion channels in sensory neurons are molecular sensors that detect external stimuli and transduce them to neuronal signals. Although Ca2+-activated nonselective cation (CAN) channels were found in many cell types, CAN channels in mammalian sensory neurons are not yet identified. In the present study, we describe an ion channel that is activated by intracellular Ca2+ in cultured rat sensory neurons. Half-maximal concentration of Ca2+ in activating the CAN channel was approximately 780 mum. The current-voltage relationship of this channel was linear with a unit conductance of 28.8 +/- 0.4 pS at -60 mV in symmetrical 140 mm Na+ solution. The CAN channel was permeable to monovalent cations such as Na+, K+, Cs+, and Li+, but poorly permeable to Ca2+. The CAN channel in mammalian sensory neurons was reversibly blocked by intracellular adenine nucleotides, such as ATP, ADP, and AMP. Interestingly, single-channel currents activated by Ca2+ were blocked by fenamates, such as flufenamic acid, a class of nonsteroidal anti-inflammatory drugs. Thus, these results suggest that CAN channels in mammalian sensory neurons would participate in modulating nociceptive neural transmission in response to ever-changing intracellular Ca2+ in the local microenvironment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据