4.7 Article

Investigation of the influence of humidity on the ultrasonic agglomeration of submicron particles in diesel exhausts

期刊

ULTRASONICS
卷 41, 期 4, 页码 277-281

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0041-624X(02)00452-3

关键词

acoustic particle agglomeration; flue gas cleaning; high-power ultrasound; industrial applications

向作者/读者索取更多资源

Removing very fine particles in the 0.01-1 mum range generated in diesel combustion is important for air pollution abatement because of the impact such particles have on the environment. By forming larger particles, acoustic agglomeration of submicron particles is presented as a promising process for enhancing the efficiency of the current filtration systems for particle removal. Nevertheless, some authors have pointed out that acoustic agglomeration is much more efficient for larger particles than for smaller particles. This paper studies the effect of humidity on the acoustic agglomeration of diesel exhausts particles in the nanometer size range at 21 kHz. For the agglomeration tests, the experimental facility basically consists of a pilot scale plant with a diesel engine, an ultrasonic agglomeration chamber a dilution system, a nozzle atomizer, and an aerosol sampling and measuring station. The effect of the ultrasonic treatment, generated by a linear array of four high-power stepped-plate transducers on fumes at flow rates of 900 N m(3)/h, was a small reduction in the number concentration of particles at the outlet of the chamber. However, the presence of humidity raised the agglomeration rate by decreasing the number particle concentration by up to 56%. A numerical study of the agglomeration process as a linear combination of the orthokinetic and hydrodynamic agglomeration coefficients resulting from mutual radiation pressure also found that acoustic agglomeration was enhanced by humidity. Both results confirm the benefit of using high-power ultrasound together with humidity to enhance the agglomeration of particles much smaller than I gm. (C) 2002 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据