4.3 Review

Internal nasal floor configuration in Homo with special reference to the evolution of Neandertal facial form

期刊

JOURNAL OF HUMAN EVOLUTION
卷 44, 期 6, 页码 701-729

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/S0047-2484(03)00062-9

关键词

Pleistocene hominin evolution; archaic humans; subnasal morphology; nasal cavity; piriform aperture

向作者/读者索取更多资源

The presence of a steeply sloping or depressed nasal floor within the nasal cavity of Neandertals is frequently mentioned as a likely specialization or autapomorphy. The depressed nasal floor has also been seen as contributing to a relatively more capacious nasal cavity in Neandertals, which is tied to cold-climate respiratory adaptation and energetics. These observations have been limited largely to a relatively few intact crania, and the character states associated with this trait have not been as precisely codified or analyzed as those published for Plio-Pleistocene hommins (McCollum et al., 1993, J. Hum. Evol. 24, 87; McCollum, 2000, Am. J. Phys. Anthrop. 112, 275). This study examines the internal nasal floor topography in complete crania and isolated maxillae in European, west Asian, and African fossil Homo (n = 158) including 25 Neandertals, and a wide range of recent humans from Europe, the Near East, and Africa (n = 522). The configuration of the internal nasal floor relative to the nasal cavity entrance is codified as: 1) level, forming a smooth continuous plane; 2) sloped or mildly stepped; or 3) bilevel with a pronounced vertical depression. The frequency of these nasal floor configurations, and their relationship to both nasal margin cresting patterning and a comprehensive set of nasofacial metrics is examined. Neandertals show a high frequency of the bilevel (depressed) configuration in both adults and subadults (80%), but this configuration is also present in lower frequencies in Middle Pleistocene African, Late Pleistocene non-Neandertal (Skhul, Qafzeh), and European Later Upper Pateolithic samples (15%-50%). The bilevel configuration is also present in lower frequencies (ca. 10%) in all recent human samples, but attains nearly 20% in some sub-Saharan African samples. Across extinct and extant Homo (excluding Neandertals), internal nasal floor configuration is not associated with piriform aperture nasal margin patterning, but the two are strongly linked in Neandertals. Variation in internal nasal floor configuration in recent humans is primarily associated with internal nasal fossa breadth and nasal bridge elevation, whereas in fossil hominins, it is associated primarily with variation in facial height. Cold-climate and activity-related thermal adaptation as an explanation for the high frequency of pronounced nasal floor depression in Neandertals is inconsistent with all available data. Alternatively, variation in internal nasal floor configuration is more likely related to stochastically derived populational differences in fetal nasofacial growth patterns that do not sharply differentiate genus Homo taxa (i.e., cladistically), but do phenetically differentiate groups, in particular the Neandertals, especially when considered in combination with other nasofacial features. (C) 2003 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据