4.1 Article

Resampling-based multiple testing for microarray data analysis

期刊

TEST
卷 12, 期 1, 页码 1-77

出版社

SPRINGER
DOI: 10.1007/BF02595811

关键词

multiple testing; family-wise error rate; false discovery rate; adjusted p-value; fast algorithm; minP; microarray

向作者/读者索取更多资源

The burgeoning field of genomics has revived interest in multiple testing procedures by raising new methodological and computational challenges. For example, microarray experiments generate large multiplicity problems in which thousands of hypotheses are tested simultaneously. Westfall and Young (1993) propose resampling-based p-value adjustment procedures which are highly relevant to microarray experiments. This article discusses different criteria for error control in resampling-based multiple testing, including (a) the family wise error rate of Westfall and Young (1993) and (b) the false discovery rate developed by Benjamini and Hochberg (1995), both from a frequentist viewpoint; and (c) the positive false discovery rate of Storey (2002a), which has a Bayesian motivation. We also introduce our recently developed fast algorithm for implementing the minP adjustment to control family-wise error rate. Adjusted p-values for different approaches are applied to gene expression data from two recently published microarray studies. The properties of these procedures for multiple testing are compared.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据