4.7 Article

Differential regulation of VEGF signaling by PKC-α and PKC-ε in endothelial cells

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/ATVBAHA.108.162842

关键词

endothelium vascular; vascular endothelial growth factor A; receptors vascular growth factor; nitric oxide synthase type III; protein kinase C

资金

  1. NIDDK NIH HHS [R01 DK053105-08, R01 DK053105, R01 DK53105] Funding Source: Medline

向作者/读者索取更多资源

Objective-Vascular endothelial growth factor (VEGF) stimulates proangiogenic signal transduction and cell function in part through activation of protein kinase C (PKC). Our aim was to examine how individual isoforms of PKC affect VEGF action. Methods and Results-Transfection of bovine aortic endothelial cells with small interfering RNA (siRNA) targeting either PKC-alpha, delta, or epsilon caused a reduction in the cognate PKC protein by 76% to 89% without changing expression of nontargeted isoforms. Downregulation of PKC-epsilon abrogated VEGF-stimulated phosphorylation of Akt at Ser473 and eNOS at Ser1179 and decreased VEGF-stimulated NO synthase activity in intact cells. In contrast, PKC-alpha knockdown increased Akt and eNOS phosphorylation, whereas PKC delta knockdown had no significant effect. PKC-epsilon knockdown also decreased VEGF-stimulated Erk1/2 phosphorylation and abolished VEGF-stimulated DNA synthesis. Consistent with an effect on several pathways of VEGF signaling, VEGF receptor-2 (VEGFR2) tyrosine phosphorylation and expression of VEGFR2 protein and mRNA was decreased by 81, 90, and 84%, respectively, during knockdown of PKC-epsilon, but increased during PKC-alpha knockdown. Conclusions-By regulating VEGFR2 expression and activation, PKC-epsilon expression is critical for activation of Akt and eNOS by VEGF and contributes to VEGF-stimulated Erk activation, whereas PKC-alpha has opposite effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据