4.6 Article

Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery

期刊

ELECTROCHEMISTRY COMMUNICATIONS
卷 5, 期 6, 页码 467-472

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S1388-2481(03)00106-1

关键词

lithium-ion battery; graphite; thermal stability; anion receptor; differential scanning calorimetry; X-ray photoelectron spectroscopy

向作者/读者索取更多资源

The thermal stability of the solid electrolyte interphase (SEI) formed on a graphite anode has been enhanced by adding an anion receptor, tris(pentafluorophenyl)borane (TPFPB), to the electrolyte. The investigated electrolyte was LiBF4 in a 2:1 mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). Two concentrations of TPFPB have been investigated, 0.2 and 0.8 M. Galvanostatic cycling and differential scanning calorimetry (DSC) were used to study the effect of TPFPB on the electrochemical performance and thermal stability of graphite anodes. The best performance is obtained for a graphite anode cycled in an electrolyte with 0.2 M TPFPB: cyclability is improved, and the onset temperature for the first thermally activated reaction is increased by more than 60 C up to 140-160 degreesC. X-ray photoelectron spectroscopy (XPS) has been used to examine the composition of the SEI formed in the different electrolytes; the improved performance for the graphite cycled with 0.2 M TPFPB is attributed to a reduced amount of LiF in the SEI. (C) 2003 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据