4.6 Article

EBNA1 partitions Epstein-Barr virus plasmids in yeast cells by attaching to human EBNA1-binding protein 2 on mitotic chromosomes

期刊

JOURNAL OF VIROLOGY
卷 77, 期 12, 页码 6946-6956

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.77.12.6946-6956.2003

关键词

-

类别

向作者/读者索取更多资源

Epstein-Barr virus (EBV) episomal genomes are stably maintained in human cells and are partitioned during cell division by mitotic chromosome attachment. Partitioning is mediated by the viral EBNA1 protein, which binds both the EBV segregation element (FR) and a mitotic chromosomal component. We previously showed that the segregation of EBV-based plasmids can be reconstituted in Saccharomyces cerevisiae and is absolutely dependent on EBNA1, the EBV FR sequence, and the human EBNA1-binding protein 2 (EBP2). We have now used this yeast system to elucidate the functional contribution of human EBP2 to EBNA1-mediated plasmid partitioning. Human EBP2 was found to attach to yeast mitotic chromosomes in a cell cycle-dependent manner and cause EBNA1 to associate with the mitotic chromosomes. The domain of human EBP2 that binds both yeast and human chromosomes was mapped and shown to be functionally distinct from the EBNA1-binding domain. The functionality and localization of human EBP2 mutants and fusion proteins indicated that the attachment of EBNA1 to mitotic chromosomes is crucial for EBV plasmid segregation in S. cerevisiae, as it is in humans, and that this is the contribution of human EBP2. The results also indicate that plasmid segregation in S. cerevisiae can occur through chromosome attachment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据