4.7 Article

Fluid-fluid coexistence in colloidal systems with short-ranged strongly directional attraction

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 118, 期 21, 页码 9882-9889

出版社

AIP Publishing
DOI: 10.1063/1.1569473

关键词

-

向作者/读者索取更多资源

We present a systematic numerical study of the phase behavior of square-well fluids with a patchy short-ranged attraction. In particular, we study the effect of the size and number of attractive patches on the fluid-fluid coexistence. The model that we use is a generalization of the hard sphere square well model. The systems that we study have a stronger tendency to form gels than the isotropic square-well system. For this reason, we had to combine Gibbs ensemble simulations of the fluid-fluid coexistence with a parallel tempering scheme. For moderate directionality, changes of the critical density and the width of coexistence curves are small. For strong directionality, however, we find clear deviations from the extended law of corresponding states: in contrast to isotropic attractions, the critical point is not characterized by a universal value of the reduced second virial coefficient. Furthermore, as the directionality increases, multiparticle bonding affects the critical temperature. We discuss implications for the phase behavior, and possibly crystallization, of globular proteins. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据