4.4 Article

Optimal techniques in two-dimensional spectroscopy: Background subtraction for the 21st century

期刊

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/375502

关键词

-

向作者/读者索取更多资源

In two-dimensional spectrographs, the optical distortions in the spatial and dispersion directions produce variations in the subpixel sampling of the background spectrum. Using knowledge of the camera distortions and the curvature of the spectral features, one can recover information regarding the background spectrum on wavelength scales much smaller than a pixel. As a result, one can propagate this better sampled background spectrum through inverses of the distortion and rectification transformations and accurately model the background spectrum in two-dimensional spectra for which the distortions have not been removed (i.e., the data have not been rebinned/rectified). The procedure, as outlined in this paper, is extremely insensitive to cosmic rays, hot pixels, etc. Because of this insensitivity to discrepant pixels, sky modeling and subtraction need not be performed as one of the later steps in a reduction pipeline. Sky subtraction can now be performed as one of the earliest tasks, perhaps just after dividing by a flat field. Because subtraction of the background can be performed without having to clean cosmic rays, such bad pixel values can be trivially identified after removal of the two-dimensional sky background.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据