4.2 Article

Isolation of a complete A1A0 ATP synthase comprising nine subunits from the hyperthermophile Methanococcus jannaschii

期刊

EXTREMOPHILES
卷 7, 期 3, 页码 249-257

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s00792-003-0318-7

关键词

A(1)A(0) ATPase; archaea; electron microscopy; functional coupling; purification

向作者/读者索取更多资源

Archaeal A(1)A(O) ATP synthase/ATPase operons are highly conserved among species and comprise at least nine genes encoding structural proteins. However, all A(1)A(O) ATPase preparations reported to date contained only three to six subunits and, therefore, the study of this unique class of secondary energy converters is still in its infancy. To improve the quality of A(1)A(O) ATPase preparations, we chose the hyperthermophilic, methanogenic archaeon Methanococcus jannaschii as a model organism. Individual subunits of the A(1)A(O) ATPase from M. jannaschii were produced in E. coli, purified, and antibodies were raised. The antibodies enabled the development of a protocol ensuring purification of the entire nine-subunit A(1)A(O) ATPase. The ATPase was solubilized from membranes of M. jannaschii by Triton X-100 and purified to apparent homogeneity by sucrose density gradient centrifugation, ion exchange chromatography, and gel filtration. Electron micrographs revealed the A(1) and A(O) domains and the central stalk, but also additional masses which could represent a second stalk. Inhibitor studies were used to demonstrate that the A(1) and A(O) domains are functionally coupled. This is the first description of an A(1) A(O) ATPase preparation in which the two domains (A(1) and A(O)) are fully conserved and functionally coupled.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据