3.8 Article Proceedings Paper

Sustained transgene expression in cartilage defects in vivo after transplantation of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system

期刊

JOURNAL OF GENE MEDICINE
卷 5, 期 6, 页码 502-509

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/jgm.368

关键词

cartilage defects; transfection; chondrocytes; alginate; transplantation

资金

  1. NIAMS NIH HHS [AR 31068, AR 45749] Funding Source: Medline

向作者/读者索取更多资源

Background Genetically modified chondrocytes may be able to modulate articular cartilage repair. To date, transplantation of modified chondrocytes into cartilage defects has been restricted to viral vectors. We tested the hypothesis that a recombinant gene can be delivered to sites of cartilage damage in vivo using chondrocytes transfected by a lipid-mediated gene transfer method. Methods Isolated lapine articular chondrocytes were transfected with an expression plasmid vector carrying the P. pyralis luciferase gene using the reagent FuGENE 6. Transfected chondrocytes were encapsulated in alginate spheres and implanted into osteochondral defects in the knee joints of rabbits. Results In vitro, luciferase activity in pCMVLuc-transfected spheres showed an early peak at day 2 post-transfection and remained elevated at day 32, the longest time point evaluated. The number of viable chondrocytes in non-transfected and transfected spheres increased over the period of cultivation. In vivo, luciferase activity was maximal at day 5 post-transfection, declined by day 16, but was still present at day 32. On histological analysis, the alginate-chondrocyte spheres filled the cartilage defects and were surrounded by a fibrous repair tissue composed of spindle-shaped cells. Conclusions These data demonstrate the successful introduction of articular chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system into osteochondral defects and the sustained expression of the transgene in vivo. This method may be used to define the effects of genes involved in cartilage repair and may provide alternative treatments for articular cartilage defects. Copyright (C) 2003 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据